You’ve probably read about Google Latitude, and maybe even used it yourself. I’ve been using it mostly without meaning to, because I activated the service on my N95’s Google Maps and the bloody thing never turns off. Here’s where I am right now:
Locative technologies are a growing area of interest for me. I believe that GPS, cell-tower triangulation and even good old Bluetooth will play a large part in making cloud-computing extra-relevant to consumers.
I know that people get a bit funny with the blend of real locations and virtual space (see Google Street View debacle) but once we’re all using our next-gen pieces of UI, your networked device could begin to act as a portal to new layers of information useful to you about the city, street, or shop you are in.
I am talking about location-based advertising. An implementational nightmare, but it is foreseeable that Semantic technologies could serve geographically relevant messages, charging advertisers on a cost per impact basis. Google kind of do this with their local search results. It’s a bit shit at the moment though.
The nearest we have to the kind of next-gen solution I’m thinking of is lastminute.com’s free service NRU, available on the Android OS. It lets you scan around your environment with your phone acting as a viewfinder, where cinemas, restaurants and theatres are overlaid in a sonar-like interface. These services pay a small amount to lastminute.com on an affiliate basis, or are paid inclusions:
NRU for Android, from lastminute on the G1
There’s one locative service I’m disappointed never took off in the UK, despite being around for a while. BrightKite is a kind of location-based Twitter, and it had real promise until Google came stomping all over them with the release of Latitude.
If I were to ‘check in’ at The Queens Larder on Russell Square, BrightKite users would see my marker and message on a map of the area, as well as other people checked in nearby. The potential for social interaction is high, because through using the service one feels proximity with other users.
With all this in mind, I’d like my readers to ‘feel closer’ to me, so as well as in this post I’ll be placing my Latitude Location Badge on my Contact Page. If you’re in the vicinity, go ahead and either serve me an advert or say hello. I won’t mind which.
My aim is to make my views on Digital Media, Branding and Emergent Technologies as accessible as possible not only to industry types, but to the blog-scouring early-adopting masses. My ongoing series on Augmented Reality has been relatively successful in boosting both the visitation and the subscribership of this blog.
Aside from the content I’ve written this month (May 2009 has been my most prolific since this blog’s inception) I have also started an SEO and social media strategy to extend the reach of the content I write here. I’ll share details later…
Anyway, the key element I want to tell you about in this post is my third strategy to make Digital Cortex portable to readers. I’ve started to provide readers with a range of subscription options, since the most common way for readers to subscribe to any blog and its content are through RSS, Email or Twitter. That’s when I came up with my brand new WordPress plugin.
I realised that my subscription solution might be useful to others also looking to grow their subscribership, so I created this:
The Subscription Options Plugin
I’ve turned my HTML code into a PHP-based plugin for all WordPress users that has the exact effect I aimed to achieve – to look good on a page, and for blog readers to easily grasp what each icon stood for.
Once installed it can be placed in any widget-ready area, allowing users to link to their various subscription options with ease.
Presently, most AR research is concerned with live video imagery and it’s processing, which allows the addition of live-rendered 3D digital images. This new augmented reality is viewable through a suitably equipped device, which incorporates a camera, a screen and a CPU capable of running specially developed software. This software is written by specialist software programmers, with knowledge of optics, 3D-image rendering, screen design and human interfaces. The work is time consuming and difficult, but since there is little competition in this field, the rare breakthroughs that do occur are as a result of capital investment: something not willingly given to developers of such a nascent technology.
What is exciting about AR research is that once the work is done, its potential is immediately seen, since in essence it is a very simple concept. All that is required from the user is their AR device and a real world target. The target is an object in the real world environment that the software is trained to identify. Typically, these are specially designed black and white cards known as markers:
An AR marker, this one relates to a 3D model of Doctor Who's Tardis in Gameware's HARVEE kit
These assist the recognition software in judging viewing altitude, distance and angle. Upon identification of a marker, the software will project or superimpose a virtual object or graphical overlay above the target, which becomes viewable on the screen of the AR device. As the device moves, the digital object orients in relation to the target in real-time:
Augmented Reality in action, multiple markers in use on the HARVEE system on a Nokia N73
The goal of some AR research is to free devices from markers, to teach AR devices to make judgements about spatial movements without fixed reference points. This is the cutting edge of AR research: markerless tracking. Most contemporary research, however, uses either marker-based or GPS information to process an environment.
Marker-based tracking is suited to local AR on a small scale, such as the Invisible Train Project (Wagner et al., 2005) in which players collaboratively keep virtual trains from colliding on a real world toy train track, making changes using their touch-screen handheld computers:
The Invisible Train Project (Wagner et al., 2005)
GPS tracking is best applied to large scale AR projects, such as ARQuake (Thomas et al, 2000), which exploits a scale virtual model of the University of Adelaide and a modified Quake engine to place on-campus players into a ‘first-person-shooter’. This application employs use of a headset, wearable computer, and a digital compass, which offer the effect that enemies appear to walk the corridors and ‘hide’ around corners. Players shoot with a motion-sensing arcade gun, but the overall effect is quite crude:
ARQuake (Thomas et al, 2000)
More data input would make the game run smoother and would provide a more immersive player experience. The best applications of AR will exploit multiple data inputs, so that large-scale applications might have the precision of marker-based applications whilst remaining location-aware.
Readers of this blog will be aware that AR’s flexibility as a platform lends applicability to a huge range of fields:
Current academic work uses AR to treat neurological conditions: AR-enabled projections have successfully cured cockroach phobia in some patients (Botella et al., 2005);
There are a wide range of civic and architectural uses: Roberts et al. (2002) have developed AR software that enables engineers to observe the locations of underground pipes and wires in situ, without the need schematics
AR offers a potentially rich resource to the tourism industry: the Virtuoso project (Wagner et al., 2005) is a handheld computer program that guides visitors around an AR enabled gallery, providing additional aural and visual information suited to each artefact;
The first commercial work in the AR space was far more playful, however: AR development in media presentations for television has led to such primetime projects as Time Commanders (Lion TV for BBC2, 2003-2005) in which contestants oversee an AR-enabled battlefield, and strategise to defeat the opposing army, and FightBox (Bomb Productions for BBC2, 2003) in which players build avatars to compete in an AR ‘beat-em-up’ that is filmed in front of a live audience; T-Immersion (2003- ) produce interactive visual installations for theme parks and trade expositions; other work is much more simple, in one case the BBC commissioned an AR remote-control virtual Dalek meant for mobile phones, due for free download from BBC Online:
A Dalek, screenshot taken from HARVEE's development platform (work in progress)
The next entry in this series is a case study in AR development. If you haven’t already done so, please follow me on Twitter or grab an RSS feed to be alerted when my series continues.
T-Mobile attracted a huge 18,000 visitors to the event last night in Trafalgar Square, who were informed of the happening through an integrated twitter, viral seeding, PR and Mobile campaign. Subscribers and visitors to the lifesforsharing YouTube channel were also informed, as were members of existing Facebook fan groups.
Here are my best images taken from the front. There is no denying that this was a highly polished media affair, but it was carried off with enough honesty to create what I think was a truly positive feeling. Even Vernon Kaye was brilliant, and I usually hate him.