Mobile Telephone

The Internet and the mobile phone are two mighty forces that have bent contemporary culture and remade it in their form. They offer immediacy, connectivity, and social interaction of a wholly different kind. These are technologies that have brought profound changes to the ways academia consider technoscience and digital communication. Their relationship was of interest to academics in the early 1990’s, who declared that their inevitable fusion would be the beginning of the age of Ubiquitous Computing: “the shift away from computing which centered on desktop machines towards smaller multiple devices distributed throughout the space” (Weiser, 1991 in Manovich, 2006). In truth, it was the microprocessor and Moore’s Law- “the number of transistors that can be fit onto a square inch of silicon doubles every 12 months” (Stokes, 2003) that led to many of the technologies that fall under this term: laptops, PDA’s, Digital Cameras, flash memory sticks and MP3 players. Only recently have we seen mobile telephony take on the true properties of the Internet.

The HARVEE project is partially backed by Nokia Corp. which recognises its potential as a Mobile 2.0 technology: user-generated content for mobile telephony that exploits web-connectivity. Mobile 2.0 is an emerging technology thematically aligned with the better established Web 2.0. Nokia already refer to their higher-end devices as multimedia computers, rather than as mobile phones. Their next generation Smartphones will make heavy use of camera-handling systems, which is predicated on the importance of user-generated content as a means to promote social interaction. This strategic move is likely to realign Nokia Corp.’s position in the mobile telephony and entertainment markets.

Last year, more camera phones were sold than digital cameras (Future Image, 2006). Nokia have a 12 megapixel camera phone ready for release in 2009, and it will be packaged with a processing unit equal to the power of a Sony PSP (Nokia Finland: non-public product specification document). MP3 and movie players are now a standard on many handsets, stored on plug-in memory cards and viewed through increasingly higher resolution colour screens. There is a growing mobile gaming market, the fastest growing sector of the Games Industry (Entertainment & Leisure Software Publishers Association (ELSPA) sales chart). The modern mobile phone receives its information from wide-band GPRS networks allowing greater network coverage and faster data transfer. Phone calls are the primary function, but users are exploiting the multi-media capabilities of their devices in ways not previously considered. It is these factors, technologic, economic and infrastructural that provide the perfect arena for Mobile AR’s entry into play.

Mobile Internet is the natural convergence of mobile telephony and the World Wide Web, and is already a common feature of new mobile devices. Mobile Internet, I would argue, is another path leading to Mobile AR, driven by mobile users demanding more from their handsets. Mobile 2.0 is the logical development of this technology- placing the power of location-based, user-generated content into a new real-world context. Google Maps Mobile is one such application that uses network triangulation and its own Google Maps technologies to offer information, directions, restaurant reviews or even satellite images of your current location- anywhere in the world. Mobile AR could achieve this same omniscience (omnipresence?) given the recent precedent for massively multi-user collaborative projects such as Wikipedia, Flickr and Google Maps itself. These are essentially commercially built infrastructures designed to be filled with everybody’s tags, comments or other content. Mobile AR could attract this same amount of devotion if it offered such an infrastructure and real-world appeal.

There is a growing emphasis on Ubiquitous Computing devices in our time-precious world, signified by the increased sales in Smartphones and WiFi enabled laptops. Perhaps not surprisingly, Mobile Internet use has increased as users’ devices become capable of greater connectivity. Indeed, the mobile connected device is becoming the ubiquitous medium of modernity, as yet more media converge in it. It is the mobile platform’s suitability to perform certain tasks that Mobile AR can take advantage of, locating itself in the niche currently occupied by Mobile Internet. Returning to my Mixed Reality Scale, Mobile AR serves the user better than Mobile Internet currently can: providing just enough reality to exploit virtuality, Mobile AR keeps the user necessarily grounded in their physical environment as they manipulate digital elements useful to their daily lives.

Crowdsourced Protein Shakes

I read about Foldit in Wired US yesterday, a game that takes the foundations laid by SETI@home, which uses thousands of computers’ idle time to decode frequencies from Space, and crowdsources solutions to the protein folding problems that are currently baffling the smartest machines in the world.

The difference with Foldit is that it’s not PC idle time that is tapped into here, but players’ idle time. There is no algorithm that can yet match humans’ depth perception; natural ability to recognise patterns; and see causal links in their actions. These traits make us humans the ideal CPU to solve these ‘protein-puzzles’:

Foldit provides a series of tutorials in which the player manipulates simple protein-like structures, and a periodically updated set of puzzles based on real proteins. The application displays a graphical representation of the protein’s structure which the user is able to manipulate with the aid of a set of tools.

As the structure is modified, a “score” is calculated based on how well-folded the protein is, based on a set of rules. A list of high scores for each puzzle is maintained. Foldit users may create and join groups, and share puzzle solutions with each other; a separate list of group high scores is maintained.

Indeed, the creators report that groups working together have led to breakthroughs not matched by either individuals or heavy-duty computing power. It is the power of the engaged-masses that the Baker Lab, research team behind the game are hoping will bring forth potential cures for HIV/AIDS, Cancer and Alzheimer’s.

More info on the game and it’s background on their Science Portal.

Does this remind anyone of War Games?

The Internet

The Internet, or specifically the World Wide Web, requires a limited virtuality in order to do its job. The shallow immersion offered to us by our computer screens actually serves our needs very well, since the Internet’s role in our lives is to connect, store and present information in accessible, searchable, scannable, and consistent form for millions of users to access simultaneously, to be dived in and out of quickly or to surround ourselves in the information we want. The naturally-immersive VR takes us partway towards Mobile AR, but its influence stops at the (admittedly profound) concept of real-time interaction with 3D digital images. What the Internet does is bring information to us, but VR forces us to go to it.

This is a function of the Mixed Reality Scale, and the distance of each from The Real. The closer we can bring artefacts from The Virtual to The Real, the more applicable these can be in our everyday lives. The self-sufficient realm of The Virtual does not require grounding in physical reality in order to exist, whereas the Internet and other MR media depend on The Real to operate. AR is the furthest that a virtual object can be ‘stitched into’ our reality, and in doing so we exploit our power in this realm to manipulate and interact with these digital elements to suit our own ends, as we currently do with the World Wide Web.

The wide-ranging entertainment resources offered by the Internet are having a profound effect on real-world businesses, a state of flux that Mobile AR could potentially exploit. There is a shift in the needs of consumers of late that is forcing a change in the ways that many blue-chip organisations are handling their businesses: Mobile data carriers (operators), portals, publishers, content owners and broadcasters are all seeking new content types to face up to the threat of VOIP (Voice Over Internet Protocol) – which is reducing voice traffic; and Web TV/ Internet – reducing (reduced?) TV audiences, particularly in the youth market.

T-Mobile, for example, seeks to improve on revenues through offering unique licensed mobile games, themes, ringtones and video-clips on their T-Zones Mobile Internet Portal; NBC’s hit-series ‘Heroes’ is the most downloaded show on the Internet, forcing NBC to offer exclusive online comics on their webpage, seeking to recoup advertising revenue losses through lacing the pages of these comics with advertising. Mobile AR represents a fresh landscape for these businesses to mine. It is no surprise, then, that some forward-thinking AR developers are already writing software specifically for the display of virtual advertisement billboards in built-up city areas (T-Immersion).

The Internet has changed the way we receive information about the world around us. This hyper-medium has swallowed the world’s information and media content, whilst continuing to enable the development of new and exciting offerings exclusive to the desktop user. The computing capacity required to use the Internet has in the past constrained the medium to the desktop computer, but in the ‘Information Age’ the World Wide Web is just that: World Wide.

Where is freedimensional?

You’ve probably read about Google Latitude, and maybe even used it yourself. I’ve been using it mostly without meaning to, because I activated the service on my N95’s Google Maps and the bloody thing never turns off. Here’s where I am right now:



Locative technologies are a growing area of interest for me. I believe that GPS, cell-tower triangulation and even good old Bluetooth will play a large part in making cloud-computing extra-relevant to consumers.

I know that people get a bit funny with the blend of real locations and virtual space (see Google Street View debacle) but once we’re all using our next-gen pieces of UI, your networked device could begin to act as a portal to new layers of information useful to you about the city, street, or shop you are in.

I am talking about location-based advertising. An implementational nightmare, but it is foreseeable that Semantic technologies could serve geographically relevant messages, charging advertisers on a cost per impact basis. Google kind of do this with their local search results. It’s a bit shit at the moment though.

The nearest we have to the kind of next-gen solution I’m thinking of is lastminute.com’s free service NRU, available on the Android OS. It lets you scan around your environment with your phone acting as a viewfinder, where cinemas, restaurants and theatres are overlaid in a sonar-like interface. These services pay a small amount to lastminute.com on an affiliate basis, or are paid inclusions:

NRU for Android, from lastminute on the G1

There’s one locative service I’m disappointed never took off in the UK, despite being around for a while. BrightKite is a kind of location-based Twitter, and it had real promise until Google came stomping all over them with the release of Latitude.

If I were to ‘check in’ at The Queens Larder on Russell Square, BrightKite users would see my marker and message on a map of the area, as well as other people checked in nearby. The potential for social interaction is high, because through using the service one feels proximity with other users.

With all this in mind, I’d like my readers to ‘feel closer’ to me, so as well as in this post I’ll be placing my Latitude Location Badge on my Contact Page. If you’re in the vicinity, go ahead and either serve me an advert or say hello. I won’t mind which.

Introduction

Augmented Reality (AR) is a theme of computer research which deals with a combination of real world and computer generated data. AR is just one version of a Mixed Reality (MR) technology, where digital and real elements are mixed to create meaning. In essence AR is any live image that has an overlay of information that augments the meaning of these images.

Digital graphics are commonly put to work in the entertainment industry, and ‘mixing realities’ is a common motif for many of today’s media forms. There are varying degrees to which The Real and The Virtual can be combined. This is illustrated in my Mixed Reality Scale:

mixed-reality-scale
My Mixed Reality Scale, a simplified version of Milgram & Kishino’s (1994) Virtuality Continuum

This is a simplified version of Milgram and Kishino’s (1994) Virtuality Continuum; simplified, because their research is purely scientific, without an explicit interest in media theory or effects, therefore not wholly applicable to my analysis. At the far left of my Mixed Reality Scale lies The Real, or physical, every-day experiential reality. For the longest time we lived solely in this realm. Then, technological innovation gave rise to the cinema, and then television. These media are located one step removed from The Real, a step closer to The Virtual, and can be considered a window on another world. This world is visually similar to our own, a fact exploited by its author to narrate believable, somewhat immersive stories. If willing, the viewer is somewhat ‘removed’ from their grounding here in physical reality, allowing them to participate in the construction of a sculpted, yet static existence. The viewer can only observe this contained reality, and cannot interact with it, a function of the viewing apparatus.

Later advancements in screen media technologies allowed the superimposition of graphical information over moving images. These were the beginnings of AR, whereby most of what is seen is real with some digital elements supplementing the image. Indeed, this simple form of AR is still in wide use today, notably in cases where extra information is required to make sense of a subject. In the case of certain televised sports, for example, a clock and a scoreboard overlay a live football match, which provides additional information that is useful to the viewer. Television viewers are already accustomed to using information that is displayed in this way:

Simple Augmented Reality, televised football matches augment meaning with digital graphics
Simple Augmented Reality, televised football matches augment meaning with digital graphics

More recently, computing and graphical power gave designers the tools to build wholly virtual environments. The Virtual is a graphical representation of raw data, and the furthest removed from physical reality on my Mixed Reality Scale. Here lies the domain of Virtual Reality (VR), a technology that uses no real elements except for the user’s human senses. The user is submersed in a seemingly separate reality, where visual, acoustic and sometimes haptic feedback serve to transpose them into this artificial, yet highly immersive space. Notice the shift from viewer to user: this is a function of the interactivity offered by digital space. VR was the forerunner to current AR research, and remains an active realm of academic study.

Computer graphics also enhanced the possibilities offered by television and cinema, forging a new point on the Mixed Reality Scale. I refer to the Augmented Virtuality (AV) approach, which uses mainly digital graphics with some real elements superimposed. For example, a newsreader reporting from a virtual studio environment is one common application. I position AV one step closer towards The Virtual to reflect the ratio of real to virtual elements:

An Augmented Virtuality, the ITV newscasters sit at a real table in a virtual studio
An Augmented Virtuality, the ITV newscasters sit at a real table in a virtual studio

There is an expansive realm between AV and VR technologies, media which offer the user wholly virtual constructions that hold potential for immersion and interactivity. I refer to the media of video games and desktop computers. Here the user manipulates visually depicted information for a purpose. These media are diametrically opposed to their counterpart on my scale, the cinema and television, because they are windows this time into a virtual world, actively encouraging (rather than denying) user interactivity to perform their function. Though operating in virtuality, the user remains grounded in The Real due to apparatus constraints.

Now, further technological advancements allow the fusion of real and virtual elements in ways not previously possible. Having traversed our way from The Real to The Virtual, we have now begun to make our way back. We are making a return to Augmented Reality, taking with us the knowledge to manipulate wholly virtual 3D objects and the computing power to integrate digital information into live, real world imagery. AR is deservedly close to The Real on my scale, because it requires physicality to function. This exciting new medium has the potential to change the way we perceive our world, forging a closer integration between our two binary worlds. It is this potential as an exciting and entirely new medium that has driven me to carry out the following work.

To begin, I address the science behind AR and its current applications. Next, I exploit an industry connection to inform a discussion of AR’s development as an entertainment medium. Then, I construct a methodology for analysis from previous academic thought on emergent technologies, whilst addressing the problems of doing so. I use this methodology to locate AR in its wider technologic, academic, social and economic context. This discussion opens ground for a deeper analysis of AR’s potential socio-cultural impact, which makes use of theories of media and communication and spatial enquiry. I conclude with a final critique that holds implications for the further analysis of Mixed Reality technology.